
SoftwarePilot Development Guide

SOFTWAREPILOT DEVELOPMENT GUIDE

Dec 2019

Version 1.0

By: Jayson Boubin

With assistance from: Dr. Christopher Stewart, Shiqi Zhang, Naveen Tumkur Ramesh Babu,

 Venkata Mandadapu and Zichen Zhang

SoftwarePilot is developed by ReRoutLab at The Ohio State University
reroutlab.org/softwarepilot
All source code is available for free on Github
github.com/boubinjg/softwarepilot

1

http://reroutlab.org/softwarepilot
http://github.com/boubinjg/softwarepilot

SoftwarePilot Development Guide

Document Revisions

Date Version
Number Document Changes

12/01/2019 0.1 Initial Draft

12/27/2019 1.0 First Release Version

SoftwarePilot is developed by ReRoutLab at The Ohio State University
reroutlab.org/softwarepilot
All source code is available for free on Github
github.com/boubinjg/softwarepilot

2

http://reroutlab.org/softwarepilot
http://github.com/boubinjg/softwarepilot

SoftwarePilot Development Guide

Table of Contents

1 Introduction 6

1.1 Scope and Purpose 6

 1.2 Terminology 6

2 The SoftwarePilot Docker Environment 8

 2.1 Files and Directories 8

 2.1.1 compile.py 8

 2.1.2 cmple.pl 8

 2.1.3 Californium.properties 8

 2.2 Source Directories 8

 2.2.1 routines.src 8

 2.2.2 drivers.src 8

 2.2.3 interfaces 9

 2.2.4 Models 9

 2.2.5 externalModels 9

 2.2.6 AUAVAndroid 10

 2.2.7 AUAVLinux 10

 2.3 Build Directories 10

 2.3.1 libs 10

 2.3.2 routines 10

 2.3.3 kernels 10

 2.4 Documentation 11

 2.4.1 docs 11

 2.4.2 dji.docs 11

 2.5 Libraries and Storage 11

 2.5.1 external 11

 2.5.2 externalDLLs 11

SoftwarePilot is developed by ReRoutLab at The Ohio State University
reroutlab.org/softwarepilot
All source code is available for free on Github
github.com/boubinjg/softwarepilot

3

http://reroutlab.org/softwarepilot
http://github.com/boubinjg/softwarepilot

SoftwarePilot Development Guide
 2.5.3 Datasets 11

 2.6 Tools 11

 2.7 Temporary Files 12

3 Drivers 12

 3.1 Driver Basics 12

 3.2 Driver implementation 13

 3.2.1 Driver Code 13

 3.2.2 Adding commands to existing Drivers 15

 3.2.3 Adding a new Driver 15

 3.3 Invoking Drivers using CoAP 16

 3.4 Current Drivers 16

 3.4.1 BatteryDriver 16

 3.4.2 CaptureImageV2Driver 17

 3.4.3 DroneGimbalDriver 18

 3.4.4 FlyDroneDriver 19

 3.4.5 VisionDriver 20

 3.4.6 ExternalCommandsDriver 21

4 Routines 22

 4.1 Routine Basics 22

 4.2 Routine Implementation 22

 4.2.1 Routine Code 22

 4.2.2 Adding a New Routine 23

 4.3 Invoking Drivers from Routines 24

 4.3.1 invokeDriver 24

 4.3.2 auavLock and auavSpin 25

 4.3.3 Example Driver Call 25

 4.4 Starting and Stopping Routines 26

 4.5 Current Notable Routines 26

SoftwarePilot is developed by ReRoutLab at The Ohio State University
reroutlab.org/softwarepilot
All source code is available for free on Github
github.com/boubinjg/softwarepilot

4

http://reroutlab.org/softwarepilot
http://github.com/boubinjg/softwarepilot

SoftwarePilot Development Guide
5 Simulation and Debugging 28

 5.1 Overview 28

 5.2 SoftwarePilot Simulation 28

 5.2.1 Preparing Code for Simulation 28

 5.3 SoftwarePilot Debugging 29

 5.3.1 Compile Time 29

 5.3.2 Runtime 29

SoftwarePilot is developed by ReRoutLab at The Ohio State University
reroutlab.org/softwarepilot
All source code is available for free on Github
github.com/boubinjg/softwarepilot

5

http://reroutlab.org/softwarepilot
http://github.com/boubinjg/softwarepilot

SoftwarePilot Development Guide

1 Introduction

1.1 Scope and Purpose

SoftwarePilot is an open source middleware and API that supports aerial applications.
SoftwarePilot allows users to connect consumer DJI drones to programmable Java routines
that provide access to the drones flight controller, camera, and navigation system as well as
computer vision and deep learning software packages like OpenCV, DLIB, and Tensorflow.

SoftwarePilot is used by researchers to create and test aerial systems that use novel
autonomy policies, architectural configurations, and vision algorithms with application
domains ranging from agriculture to autonomous photography. Educators also use
SoftwarePilot to teach middle school to university students about drones, autonomous
systems, computational thinking, and programming in general

This guide covers all facets of the SoftwarePilot docker environment, explains and details
drivers, routines, simulation of SoftwarePilot code, and debugging.

1.2 Terminology
Below is a list of important terminology that will be used throughout this document and
associated definitions.

● Driver
○ A SoftwarePilot driver is one of two critical software components for

executing FAAS missions. A driver is a Java file, compiled to a JAR file, that
specifies a specialized microservice API that describes certain functions of
autonomous flight. For instance, the FlyDroneDriver specifies functions for
UAV flight. Drivers are detailed in the SoftwarePilot development guide.

● Routine
○ Routines are Java files, compiled to JAR files, that specify a series of driver

calls and other logic that constitute a FAAS mission. For instance, the
AutoSelfie routine flys a UAV to autonomously capture high-quality human
facial images. Routines are detailed in the SoftwarePilot development guide.

● Kernel
○ The SoftwarePilot Linux Kernel is an instance of SoftwarePilot that executes

outside of the SoftwarePilot virtual machine. The kernel is used for both
simulating SoftwarePilot to test functionality, and executing components of
SoftwarePilot in-mission that can not be run on the VM, like complex
machine learning algorithms. The kernel and its functionality are detailed in
the SoftwarePilot development guide

SoftwarePilot is developed by ReRoutLab at The Ohio State University
reroutlab.org/softwarepilot
All source code is available for free on Github
github.com/boubinjg/softwarepilot

6

http://reroutlab.org/softwarepilot
http://github.com/boubinjg/softwarepilot

SoftwarePilot Development Guide

● $AUAVHOME
○ AUAVHOME is a SoftwarePilot docker container environment variable that is

used to specify the root directory of the SoftwarePilot codebase, both for the
purpose of reference in this guide, and to allow SoftwarePilot to specify
absolute paths for all requisite operations in code.

● APK
○ The SoftwarePilot APK is the android application build to execute in the

SoftwarePilot android-x86 VM. The APK includes all drivers and routines as
JAR files, and can be installed using the SoftwarePilot compile script detailed
in Section 3 of this guide.

SoftwarePilot is developed by ReRoutLab at The Ohio State University
reroutlab.org/softwarepilot
All source code is available for free on Github
github.com/boubinjg/softwarepilot

7

http://reroutlab.org/softwarepilot
http://github.com/boubinjg/softwarepilot

SoftwarePilot Development Guide

2 The SoftwarePilot Docker Environment
SoftwarePilots principal development environment is packaged as a docker container.
Installation, access, and management of this environment are detailed in the
SoftwarePilot User Guide. In this section, we will describe the principal directories and
files at $AUAVHOME in the SoftwarePilot docker environment and their various uses.

2.1 Files

2.1.1 compile.py

Compile.py is a python script used to compile all SoftwarePilot code and install it
onto the virtual machine. This script is detailed in the SoftwarePilot User Guide.

2.1.2 cmple.pl

cmple.pl is a deprecated compile script that has been replaced by compile.py. This
script performs many of the same functions as compile.py, but is not properly
documented.

2.1.3 Californium.properties

Californium.properties is a properties file for our chosen implementation of CoAP,
the protocol our drivers and routines use for communication. This file provides the
ability to change many low-level network features of our CoAP implementation.

2.2 Source Directories

2.2.1 routines.src

routines.src holds all code associated with SoftwarePilot routines. This directory is
quite deep in structure, and is detailed in full in Section 4 of this guide.

2.2.2 drivers.src

drivers.src holds all code associated with SoftwarePilot drivers. This directory, like
the routines directory, is large, and is detailed in its own section, section 3, of this
guide.

SoftwarePilot is developed by ReRoutLab at The Ohio State University
reroutlab.org/softwarepilot
All source code is available for free on Github
github.com/boubinjg/softwarepilot

8

http://reroutlab.org/softwarepilot
http://github.com/boubinjg/softwarepilot

SoftwarePilot Development Guide

2.2.3 interfaces

interfaces holds all SoftwarePilot interface code. SoftwarePilot has interfaces for
both routines ($AUAVHOME/interfaces/src/main/java/AuavRoutines.java) and
drivers ($AUAVHOME/interfaces/src/main/java/AuavDrivers.java). These routines
provide helper functions and required function implementations for both Drivers
and Routines for SoftwarePilot.

2.2.4 Models

the Models directory provides implementations of prebuilt machine learning models
that are useful for Drivers and Routines. Currently, the models directory holds
python files used by the Vision Driver to recognize objects in UAV sensed images.

● $AUAVHOME/Models/FaceRecognition.py uses DLIB to find facial bounding
boxes in UAV sensed images

● $AUAVHOME/Models/YoloRecognition uses YOLOv3 and the YOLOFace
library to find facial bounding boxes in UAV sensed images

● $AUAVHOME/Models/DarknetRecognition uses YOLOv3 similarly to
YoloRecognition but with GPU support

2.2.5 externalModels

externalModels contains a series of code directories useful for a number of
SoftwarePilot techniques and processes:

● A_Star_Code and KNN_code: Both of these directories contain FAAS
pathfinding code implemented for a series of scholarly research papers that
can be useful for future tasks.

● The python directory contains a series of python scripts useful for extracting
pathfinding features from UAV sensed images for human faces. the Corn
directory, similarly, performs the same process for agricultural images of
Corn.

● The Power directory contains the EnergyProfile, an application useful for
modeling the total energy expended by FAAS routines based on a series of
inputs: Aircraft energy Profile, Edge energy Profile, and Mission Trace. Some
Aircraft and Edge traces are provided, but usually these must be constructed
or modified for specific research purposes.

SoftwarePilot is developed by ReRoutLab at The Ohio State University
reroutlab.org/softwarepilot
All source code is available for free on Github
github.com/boubinjg/softwarepilot

9

http://reroutlab.org/softwarepilot
http://github.com/boubinjg/softwarepilot

SoftwarePilot Development Guide

● Note: Many of these directories (A_Star_code, KNN_code, and python) will be
deprecated in the near future when we release neural-network based
pathfinding for SoftwarePilot.

2.2.6 AUAVAndroid

AUAVAndroid holds the code for the SoftwarePilot android app, build scripts, and
libraries.

2.2.7 AUAVLinux

AUAVLinux, similar to AUAVAndroid, holds all code, build scripts, and libraries
necessary to build the SoftwarePilot linux kernel.

2.3 Build Directories

When SoftwarePilot compiles code directories, the build outputs (JAR files, APKs, etc),
are placed into specific build directories. From these build directories, they can be
accessed by both Android, to build the AUAVAndroid app, and the SoftwarePilot
kernel where they can be started as microservices for simulation or host
communication.

2.3.1 libs

The libs directory is where all SoftwarePilot driver JAR files are held after they are
compiled.

2.3.2 routines

The routines directory is where all SoftwarePilot routine JAR files are held after they
are compiled.

2.3.3 kernels

The kernels directory holds both the AUAVLinux kernel JAR file, and the
AUAVAndroid APK file. Kernels also holds the AUAVLinux shell script used to start
the SoftwarePilot Linux kernel.

SoftwarePilot is developed by ReRoutLab at The Ohio State University
reroutlab.org/softwarepilot
All source code is available for free on Github
github.com/boubinjg/softwarepilot

10

http://reroutlab.org/softwarepilot
http://github.com/boubinjg/softwarepilot

SoftwarePilot Development Guide

2.4 Documentation

2.4.1 docs

Docs holds all SoftwarePilot Javadoc for SoftwarePilot Routines, Drivers, and
Interfaces. All documentation is in HTML format, and can be accessed from the index.html
file in $AUAVHOME/docs

2.4.2 dji.docs:

The dji.docs directory holds all documentation for the DJI SDK, which is a core
library for SoftwarePilot. Any DJI documentation required for SoftwarePilot can be
accessed using the $AUAVHOME/dji.docs/index.html file.

2.5 Libraries and Storage

2.5.1 external

External holds all JAR files for external libraries that are not installed directly onto
the SoftwarePilot Docker environment. At compilation, gradle compiles every java
file against each of the JAR files in this directory. If you must add a library in the
form of a JAR file to a SoftwarePilot routine, driver, or interface, the JAR file must be
added here.

2.5.2 externalDLLs

externalDLLs holds all shared library objects for libraries that are distributed as
shared libraries, and not JAR files or separate software. If you must add a library in
the form of a shared object to a SoftwarePilot routine, driver, or interface, the .so file
must be added here.

2.5.3 Datasets

the Datasets directory holds compiled datasets used by machine learning and
pathfinding algorithms.

2.6 Tools

the SoftwarePIlot tools directory contains a series of potentially useful tools that are
covered in the User Guide. Particularly, the coap-tool, and the Docker tools directory.

SoftwarePilot is developed by ReRoutLab at The Ohio State University
reroutlab.org/softwarepilot
All source code is available for free on Github
github.com/boubinjg/softwarepilot

11

http://reroutlab.org/softwarepilot
http://github.com/boubinjg/softwarepilot

SoftwarePilot Development Guide

2.7 Temporary files

Temporary files exist in the $AUAVHOME/tmp directory. This directory contains
temporary images captured by the UAV and downloaded, config files for temporary
routines, temporary json and yaml metadata for transferred data, and more. Files in
this directory are often replaced by software, but metadata and images from prior
driver and routine executions can be viewed for debugging purposes on an
inconsistent basis.

3 Drivers
The core component of the SoftwarePilot API is the SoftwarePilot driver. Drivers are
java-based microservices that are exposed over CoAP to other drivers, routines, and
any CoAP client on your network (like the CC app or SoftwarePilot CoAP Tool). Each
driver is essentially a stand-alone server with its own dedicated port. Drivers await
requests from routines, drivers, or CoAP clients. When a request is made, the
appropriate driver executes code associated with the request. Example may include
flying the UAV in a certain direction, capturing data, performing a machine learning
task, etc.

3.1 Driver Basics

SoftwarePilot drivers are implemented as Java programs. They are CoAP servers that
are hosted on the device execution SoftwarePilot code (either the Android VM
running the SoftwarePilot Android app, the host machine running the SoftwarePilot
Linux kernel, or both). SoftwarePilot drivers bind to a random port, and accept HTTP
PUT requests over CoAP to perform certain implemented functions.

All drivers are located in the $DRIVER_SOURCE directory:

$DRIVER_SOURCE = $AUAVHOME/drivers.src/org/reroutlab/code/auav/drivers/

Here, you will find the source directories for all SoftwarePilot drivers. Each driver’s
source directory contains gradle build scripts and Java source code located in
$DRIVER_SOURCE/$DRIVER_NAME/src/main/java/

SoftwarePilot is developed by ReRoutLab at The Ohio State University
reroutlab.org/softwarepilot
All source code is available for free on Github
github.com/boubinjg/softwarepilot

12

http://reroutlab.org/softwarepilot
http://github.com/boubinjg/softwarepilot

SoftwarePilot Development Guide

3.2 Driver Implementation

Basic driver implementation is relatively simple. At their core, driver java files have
subcomponents, the Constructor, and the Resource nested class

3.2.1 Driver Code

● The Driver Constructor:
○ Driver constructors are simple. The entire purpose of a SoftwarePilot driver

constructor is to start a CoAP server that can handle HTTP PUT requests.
Example code for this process can be seen below from the “FlyDroneDriver”

Above, the full construct for the FlyDroneDriver can be seen. The driver
simply constructs a CoAP Server, binds a CoAP endpoint to a randomly
generated port (LISTEN_PORT is set to 0), adds both the CoAP endpoint and
fddResource (renamed variant of the Resource class for FlyDroneDriver) to
the CoAP server, and starts the server.

● Resource:
○ The Resource nested class is implemented in every driver. It only

implements one function, handlePUT, which accepts CoAP put requests.
○ handlePUT accepts a CoapExchange which can be used to accept PUT

request Payloads. a PUT request payload, in this context, refers to the Driver
name, command, and parameter formatted strings described in the User
Guide. Driver names are used by the External Commands Driver (detailed in
section 3.4 of this guide) to find which port the named driver is listening on.
The External Commands Driver then sends an HTTP PUT request to the IP
and Port of that driver which includes the driver command, and any driver
parameters.

SoftwarePilot is developed by ReRoutLab at The Ohio State University
reroutlab.org/softwarepilot
All source code is available for free on Github
github.com/boubinjg/softwarepilot

13

http://reroutlab.org/softwarepilot
http://github.com/boubinjg/softwarepilot

SoftwarePilot Development Guide

○ The handlePUT function then parses the arguments from the CoAP payload,
and determines which driver command has been invoked, and then executes
code relative to that command, or returns an error if the command was not
found.

○ Below is an image showing the beginning of the handlePut function in the
fddResource (specific Resource class variant) nested class of
FlyDroneDriver. The handlePUT function operates as follows:

■ Extract the binary PUT payload from the coapExchange
■ Attempt to convert the payload to a UTF-8 string
■ Print the string to system.out for logging purposes
■ Split the string by the “-” character
■ Check to see if any driver parameters are set to Simulation,

“dp=AUAVsim” (described in section 5 of this guide).
■ Begin checking the driver command to determine which driver

function to execute.
● In this example, we see both the “help” and “hdg” command

code. More functions are available below.

SoftwarePilot is developed by ReRoutLab at The Ohio State University
reroutlab.org/softwarepilot
All source code is available for free on Github
github.com/boubinjg/softwarepilot

14

http://reroutlab.org/softwarepilot
http://github.com/boubinjg/softwarepilot

SoftwarePilot Development Guide

3.2.2 Adding commands to existing drivers

To add a command to an existing driver is incredibly simple. Adding a command
only requires adding another if statement in the handlePUT function of the drivers
Resource class to identify the driver command.

● Example: If you want to add a driver command “fly” to the FlyDroneDriver,
simply add the following if statement to the bottom of the handlePUT
function in FlyDroneDriver’s resource class:

○ if(args[0].equals(“dc=fly”)){

//DRIVER CODE HERE

}

3.2.3 Adding a new Driver

Adding a new driver requires a bit more effort than updating an existing driver with
new commands. Luckily, we provide a driver template,
$DRIVER_SOURCE/TemplateDriver, to help with the process. The steps to create a
new driver (called $NEW_DRIVER) include:

● Create a new Driver directory at $DRIVER_SOURCE with the name
$NEW_DRIVER by copying $DRIVER_SOURCE/TemplateDriver to
$DRIVER_SOURCE/$NEW_DRIVER

Note: Driver names must end with “Driver”. For instance, FlyDroneDriver is
a valid driver name, whereas DriverToFlyDrone is not, so name accordingly.

● After creating your driver’s directory, go to
$DRIVER_SOURCE/$NEW_DRIVER/src/main/java and change the name of
the driver java file to $NEW_DRIVER.java. In this file, next change the class
name to $NEW_DRIVER, and update all instances of that class name
throughout the file:

○ The class name on line 59
○ The constructor name on line 127

SoftwarePilot is developed by ReRoutLab at The Ohio State University
reroutlab.org/softwarepilot
All source code is available for free on Github
github.com/boubinjg/softwarepilot

15

http://reroutlab.org/softwarepilot
http://github.com/boubinjg/softwarepilot

SoftwarePilot Development Guide

○ The invocation when the Logger is initialized on line 64
● Once you have properly updated the Java file, add your Driver code.
● To compile the JAR file for $NEW_DRIVER, you must next link it to gradle:

○ In $DRIVER_SOURCE/$NEW_DRIVER/build.gradle:
■ add $NEW_DRIVER to the jar.baseName on line 6
■ Example:

jar.baseName=’org.reroutlab.code.auav.drivers.$NEW_DRIVER’

○ In $AUAVHOME/drivers.src/settings.gradle:
■ Add an include line for your driver to the end of the file:
■ Example:

include ”org:reroutlab:code:auav:drivers:$NEW_DRIVER”

Once all of these changes have been added, you can compile drivers using
compile.py with either the -drv, -code, or -all flags. We recommend you use the -drv
flag to assure that your driver is compiling without errors. If your driver has
compiled correctly, it will return no errors, and its JAR file with the specified name
will be available in the $AUAVHOME/libs/ directory

3.3 Invoking Drivers using CoAP

Drivers can be invoked with CoAP using the CC app, the CoAP tool provided in
$AUAVHOME/toosl/coap-tool/

The process for using both of these features is covered in the SoftwarePilot User
Guide. Information on testing and simulating Driver functions is available in Section 5
of this guide.6

3.4 Current Drivers:

In this section, we list all important drivers that currently exist in SoftwarePilot and their
commands. Some SoftwarePilot drivers that have deprecated are still available in code, and
some drivers have deprecated commands, but only supported drivers and commands are
listed hperiodiallyere.

3.4.1 BatteryDriver

The SoftwarePIlot BatteryDriver is used to capture battery information from the DJI
UAV for use in SoftwarePilot routines. It supports the following commands

SoftwarePilot is developed by ReRoutLab at The Ohio State University
reroutlab.org/softwarepilot
All source code is available for free on Github
github.com/boubinjg/softwarepilot

16

http://reroutlab.org/softwarepilot
http://github.com/boubinjg/softwarepilot

SoftwarePilot Development Guide

● dc=cfg:

This command configures the battery driver, starting a DJi callback that
allows the battery driver to gather battery information periodically from the
UAV. This command must be run before dc=dji to gain proper battery
information..

● dc=dji:

This command returns the battery percentage, voltage, MAH capacity, and
current of the DJI UAV battery in real time.

3.4.2 CaptureImageV2Driver

CaptureImageV2Driver (updated from V1) uses the DJI drone’s camera to capture
images and store them on the SoftwarePilot VM.

● dc=ssm

ssm stands for “Set Shoot Mode”. In this context, SSM sets the shoot mode of
the DJI camera to shoot pictures. Note: This is a necessary configuration
step, and must be run before dc=get is invoked

● dc=get

get captures a photo using the DJI drone camera. When get is executed, the
UAV captures a photo and stores it to its internal SD card for later download.

● dc=dld

dld will download a thumbnail style image from the DJI drone onto the
SoftwarePilot Virtual Machine. This file will be of size 960x720 and will be
located in /storage/emulated/0/AUAVtmp/pictmp.dat.

● dc=dldFull

dldFull works similarly to dld, but downloads an image a the full resolution
the UAV in question is capable of capturing (ex. the Spark can capture
4000x3000 images, which dldFull captures). This full image will be
downloaded to /storage/emulated/0/AUAVTmp/fullPic.JPG

Note: Helper functions to download images are available in
RoutineTemplate, discussed in section 4 of this guide.

SoftwarePilot is developed by ReRoutLab at The Ohio State University
reroutlab.org/softwarepilot
All source code is available for free on Github
github.com/boubinjg/softwarepilot

17

http://reroutlab.org/softwarepilot
http://github.com/boubinjg/softwarepilot

SoftwarePilot Development Guide

3.4.3 DroneGimbalDriver

DroneGimbalDriver adjusts the gimbal angle of any DJI UAV that has a Gimbal.

● dc=cal

This command calibrates the gimal, setting the appropriate DJI callback to
modify the gimal position. This function must be called before any other
gimbal functions are called.

● dc=pos

This command returns the UAV’s gimbal pitch position, which is an integer
value between 0 and 90 degrees.

● dc=res

res sets the gimbal position of the UAV to a pitch angle of 0, essentially
resetting the position to a forward heading.

● dc=dna-dp=angle

dna sets the gimbal’s pitch position down an absolute number of degrees,
between 0 and 90. The driver parameter angle specifies the number of
degrees.

● dc=upa-dp=angle

una sets the gimbal’s pitch position up an absolute number of degrees,
between 0 and 90. The driver parameter angle specifies the number of
degrees.

● dc=shk

shk shakes the gimbal up and down twice. The purpose of this command is
to provide visual acknowledgement from the UAV for some task completion.
This can be useful for acknowledging a target recognition, a correct task
completion, or simply testing connection between the UAV and edge system.

● dc=dwn-dp=angle

SoftwarePilot is developed by ReRoutLab at The Ohio State University
reroutlab.org/softwarepilot
All source code is available for free on Github
github.com/boubinjg/softwarepilot

18

http://reroutlab.org/softwarepilot
http://github.com/boubinjg/softwarepilot

SoftwarePilot Development Guide

dwn moves the UAV’s gimbal pitch angle down a relative amount. The driver
parameter angle specifies the number of degrees.

● dc=ups-dp=angle

ups moves the UAV’s gimbal pitch angle up a relative amount. The driver
parameter angle specifies the number of degrees.

● dc=lft-dp=angle

dwn moves the UAV’s gimbal yaw angle left a relative amount. The driver
parameter angle specifies the number of degrees.

● dc=rgt-dp=angle

dwn moves the UAV’s gimbal pitch angle right a relative amount. The driver
parameter angle specifies the number of degrees.

3.4.4 FlyDroneDriver

● dc=cfg

cfg configuers the DJI sdk flight controller to allow for proper movement of
the UAV in all environments. Note: before any flight actions are undertaken,
the cfg command must be run.

● dc=hdg

hdg can be used to get the aircraft’s current yaw heading in
world-coordinates.

● Takeoff and landing:

Takeoff and landing are broken down into two commands, dc=lft and dc=lnd.
lft will take the UAV off by flying it one meter off the ground and hovering.
lnd will land the UAV from any height back onto the ground and turn the
propellers off,

● Rotation:

UAV rotation can be performed using the dc=rca-dp=angle and
rc=rcc-dp=angle commands and parameters. rca will rotate the UAV

SoftwarePilot is developed by ReRoutLab at The Ohio State University
reroutlab.org/softwarepilot
All source code is available for free on Github
github.com/boubinjg/softwarepilot

19

http://reroutlab.org/softwarepilot
http://github.com/boubinjg/softwarepilot

SoftwarePilot Development Guide

clockwise along its yaw axis by a number of degrees specified by angle. rcc
will rotate the UAV counterclockwise,

● Movement:

There are a number of driver commands implemented for flying the UAV. A
series of command exist to move the UAV small amounts (2 feet) in any
direction. Those are:

○ dc=rgh, move the UAV right 2 feet
○ dc=lef, move the UAV left 2 feet
○ dc=fwd, move the UAV forward 2 feet
○ dc=bck, move the UAV backward 2 feet
○ dc=ups, move the UAV up 2 feet
○ dc=dwn, move the UAV down 2 feet

You can also specify vector movement. A movement vector has 5
components, pitch angle, roll angle, yaw angle, throttle, and time. The UAV
will move along a vector in each provided direction once per second for the
specified number of seconds.

○ dc=vec-dp=pitch-dp=roll-dp=yaw-dp=throttle-dp=time
3.4.5 VisionDriver

The Vision Driver performs a number of machine learning tasks on images captured
by the UAV. All tasks that the vision driver currently performs are too complicated
to be run on the Android VM, and therefore must be run on in the SoftwarePilot
docker environment. There are a number of helper functions that must be used to
invoke these commands, which are detailed in section 4 and available in the
template routine. Note: to execute any VisionDriver command, you must have an
instance of the SoftwarePilot kernel running in the docker environment.

● dc=fce

fce runs DLIB facial recognition on images sensed from the UAV and returns
a facial recognition bounding box for each face in the image.

● dc=yolo

yolo runs YoloFace facial recognition on images sensed from the UAV and
returns a facial recognition bounding box for each face in the image.

SoftwarePilot is developed by ReRoutLab at The Ohio State University
reroutlab.org/softwarepilot
All source code is available for free on Github
github.com/boubinjg/softwarepilot

20

http://reroutlab.org/softwarepilot
http://github.com/boubinjg/softwarepilot

SoftwarePilot Development Guide

YoloFace is the more updated and preferred version of the two facial
recognition algorithms.

Note: We are currently implementing a general YOLO recognition system to
be released soon.

● Facial Recognition Pathfinding

Two functions exist for facial recognition optimization pathfinding using our
feature extraction approach from our paper: Managing Edge Resources for
Fully Autonomous Aerial Systems presented at ACM/IEEE SEC 2019. These
algorithms will return movement directions from the current UAV position
that will improve facial recognition images. dc=knn uses our knn pathfinding
approach, dc=ast uses our A* pathfinding approach.

3.4.6 External Commands Driver

The External Commands Driver is a special driver that is never directly invoked by
the user. It holds information that maps driver names to IPs and Ports so CoAP calls to
drivers can be disseminated correctly. The External Commands driver always sits at
the same port (5117) of any machine with an active kernel, and routes every CoAP
request sent by either the coap tool or CC app to the appropriate driver. Routines also
have a function that they can use to invoke drivers, which is detailed in Section 4, that
directly calls external commands.

SoftwarePilot is developed by ReRoutLab at The Ohio State University
reroutlab.org/softwarepilot
All source code is available for free on Github
github.com/boubinjg/softwarepilot

21

http://reroutlab.org/softwarepilot
http://github.com/boubinjg/softwarepilot

SoftwarePilot Development Guide

4 Routines
4.1 Routine Basics

SoftwarePilot routines can be thought of as applications, as compared to drivers
which are components of the SoftwarePilot API. Routines are generally comprised of a
series of commands which constitute an automated or fully autonomous aerial system
mission. Routines, like Drivers, are JAR files which are built from Java source files.

All routines are located in the $ROUTINE_SOURCE directory:

ROUTINE_SOURcE = $AUAVHOME/routines.src/org/reroutlab/code/auav/routines/

Here, you will find the source directories for all SoftwarePilot routines. Each routine’s
source directory contains gradle build scripts and java source code located in
$ROUTINE_SOURCE/$ROUTINE_NAME/src/main/java

4.2 Routine Implementation

Routine implementation is quite similar to driver implementation. Routines, at their
core, are java classes comprised of four methods:

● The constructor
● startRoutine()
● stopRoutine()
● run()

Each of these functions is detailed in the following section.

4.2.1 Routine Code

● The Routine Constructor:
○ Routine constructors are much simpler than Driver constructors. Routines

are threads, which implement a run() method that contains the routine’s
core logic. Routine constructors simply construct a new thread which, if
started, will execute the routines run() method.

● startRoutine() and stopRoutine():
○ These functions are used to start and stop the routines run() function.

startRoutine() starts a new instance of the routine main thread.
○ stopRoutine() sets the forceStop public boolean to True. Routines should

check this boolean value regularly to determine whether they should stop
before finishing execution.

SoftwarePilot is developed by ReRoutLab at The Ohio State University
reroutlab.org/softwarepilot
All source code is available for free on Github
github.com/boubinjg/softwarepilot

22

http://reroutlab.org/softwarepilot
http://github.com/boubinjg/softwarepilot

SoftwarePilot Development Guide

● run():
○ The run method of a routine is where most logic is implemented. Run

functions usually contain a series of driver calls and other java logic which
amount to a mission that flys the UAV, senses data, and manipulates that
data to determine future UAV actions. Below is an example from
BasicRoutine, our routine template .

○ The run function first parses arguments from the CoAP request, specified as
“params”. These parameters may be empty, but can be used to find
parameters passed through the CoAP request that initiated the routine.

○ Next, the config() function is run. This is a helper function that runs
configuration driver calls for both Flight and the UAV Camera, as well as
turning “sim” mode off, which is discussed further in Section 5 of this guide.

○ Then, the routine begins to call Driver functions, as detailed in Section 4.3 of
this guide.

4.2.2 Adding a New Routine

Constructing a new routine is similar in practice to adding a new Driver. The steps
to create a new routine (called $NEW_ROUTINE) are as follows:

● Create a new Routine directory at $ROUTINE_SOURCE with the name
$NEW_ROUTINE by copying $ROUTINE_SOURCE/BasicRoutine to
$ROUTINE_SOURCE/$NEW_ROUTINE

Note: unlike drivers, routines do not have name requirements. You can name
a routine whatever you please.

● After creating your routine’s directory, go to
$ROUTINE_SOURCE/$NEW_ROUTINE/src/main/java and change the name
of the routine java file to $NEW_ROUTINE.java. In this file, next change the

SoftwarePilot is developed by ReRoutLab at The Ohio State University
reroutlab.org/softwarepilot
All source code is available for free on Github
github.com/boubinjg/softwarepilot

23

http://reroutlab.org/softwarepilot
http://github.com/boubinjg/softwarepilot

SoftwarePilot Development Guide

class name to $NEW_ROUTINE, and update all instances of the class name
throughout the file:

○ The Class name on line 77
○ The constructor on line 296
○ Any printout strings with the routine name in them

● Once you have properly updated the java file, add your routine code.
● To compile the JAR file for $NEW_ROUTINE, you must next link it to gradle:

○ in $ROUTINE_SOURCE/$NEW_ROUTINE/build.gradle
■ add $NEW_ROUTINE to the jar.baseName on line 5
■ Example:

jar.basename= ‘org.reroutlab.code.auav.routines.$NEW_ROUTINE’

○ In $AUAVHOME/routines.src/settings.gradle:
■ Add an include line for your routine at the end of the file:
■ Example:

include “org:reroutlab.code.auav.routines.$NEW_ROUTINE”

Once all of these changes have been added, you can compile routines using
compile.py with either the -rtn, -code, or -all flags. We recommend that you use the
-rtn flag to assure that your routine is compiling without errors. If your routine has
compiled correctly, it will return no errors, and its JAR file with the specified name
will be available in the $AUAVHOME/routines/ directory

4.3 Invoking Drives from Routines

SoftwarePilot routines make considerable use of driver calls to accomplish
complicated UAV flight and machine learning tasks. To call a driver from a routine,
you must use three functions:

● auavLock
● invokeDriver
● auavSpin

 Each function is detailed below:

4.3.1 invokeDriver:

the invokeDriver function executes a CoAP call to a driver, and returns the CoAP
response to a specified CoAP handler. Invoke driver is defined in the
AuavRoutines.java interface file in $AUAVHOME/interfaces/src/main/java

SoftwarePilot is developed by ReRoutLab at The Ohio State University
reroutlab.org/softwarepilot
All source code is available for free on Github
github.com/boubinjg/softwarepilot

24

http://reroutlab.org/softwarepilot
http://github.com/boubinjg/softwarepilot

SoftwarePilot Development Guide

The function invokeDriver takes the following arguments:

● String dn
○ The name of the Driver jar file
○ Ex: org.reroutlab.auav.drivers.FlyDroneDriver

● String params
○ The driver command and any parameters sent over CoAP
○ Ex: dc=lft

● CoapHandler ch
○ A CoAP handler that can be used to process the CoAP request such

that the caller can access the CoAP response
○ Ex: the class AUAVHandler object auavResp in the AuavRoutines

interface provides a CoAP handler to all routines that can be used:
auavResp.ch

InvokeDriver returns a string denoting its success or failure.

4.3.2 auavLock and auavSpin

auavLock and auavSpin are functions implemented in the AuavRoutines.java
interface that function as spinlocks to assure that the control flow of SoftwarePilot
routines remains synchronous as driver calls execute. InvokeDriver is inherently
asynchronous, meaning it does not wait for a response from the CoAP handler
before returning a response to its calling routine. Without some sort of locking
mechanism, routine control flow could return before a driver’s action has been
completed.

auavLock takes one string argument, meant to denote the reason for locking.
auavLock should be set before the invokeDriver call, and set to a string that is not
equal to “continue”. After a driver call, auavSpin should be called to assure that the
driver call has completed before control flow is continued.

4.3.3 Example Driver Call

Above is a call to the FlyDroneDriver to configure UAV flight. First, the calling
routine acquires the auavLock with the “configFlight” string. invokeDriver is then
called to execute the dc=cfg driver call to the FlyDroneDriver using the CoAP
handler auavResp.ch. invokeDriver will eventually return string succ to denote its

SoftwarePilot is developed by ReRoutLab at The Ohio State University
reroutlab.org/softwarepilot
All source code is available for free on Github
github.com/boubinjg/softwarepilot

25

http://reroutlab.org/softwarepilot
http://github.com/boubinjg/softwarepilot

SoftwarePilot Development Guide

success or failure. However, until the above invokeDriver call returns, auavSpin will
continually sleep the main thread of the routine. Once invokeDriver returns, control
flow can continue past auavSpin.

4.4 Starting and Stopping Routines

Starting and stopping routines using CoAP can be done using the CoAP client in the
SoftwarePilot docker environment or CC app on the SoftwarePilot VM:

● Starting a Routine
○ Using the CC app, starting a routine can be performed by typing the

following:
■ dn=rtn-dc=start-dp=$ROUTINE_NAME
■ You may add any other parameters as -dp’s after $ROUTINE_NAME

○ Using the CoAP client in the docker environment, type the following
command in $AUAVHOME/tools/coap-tool/

■ ./auav.pl IP rtn start $ROUTINE_NAME
■ IP is the IP address of your currently running kernel, on the VM,

Docker Environment, or elsewhere
■ You may add any other parameters after $ROUTINE_NAME,

separated by spaces
● Stopping a Routine

○ Stopping a routine is quite similar to starting a routine. Stopping a routine
using either of the above methods requires simply replacing “start” with
“stop” as the driver command for either command invocation method.

○ Note: Not all routines properly implement stopping procedures. It is
recommended that you implement mechanisms as described in this section
for stopping routines at safety-critical points, especially routines which fly
the UAV.

4.5 Current Notable routines

Below is a list of current notable routines, their arguments, and their functionality:

● AutoSelfie
○ AutoSelfie is a routine referenced in our 2019 SEC paper. This routine flys

up, finds a nearby human face, and attempts to take the best possible picture
of that face, taking into account proximity, location, lighting, and more
features.

○ Arguments: IP: the IP address of the host machine to access the vision driver.

SoftwarePilot is developed by ReRoutLab at The Ohio State University
reroutlab.org/softwarepilot
All source code is available for free on Github
github.com/boubinjg/softwarepilot

26

http://reroutlab.org/softwarepilot
http://github.com/boubinjg/softwarepilot

SoftwarePilot Development Guide

● BasicVision
○ Arguments: IP: the IP address of the host machine to access the vision driver.

● FindPassword
○ This routine was used at BuckeyeCode 2019. It plays a game with the user,

where the UAV flys to head height and allows the user to input a password.
The password is binary, with a 1 denoted by a visible human face, and a 0
denoted by no visible human faces. If the password is correctly input, the
UAV shakes its gimbal and lands.

● Detect
○ Detect is an early version of the AutoSelfie routine, where the UAV scans a

room by rotating slowly around it, searching for human faces. Once it finds a
human face, it returns the image to the VM and lands.

● BasicRoutine
○ Basic routine demonstrates simple UAV flight capabilities. BasicRoutine

takes off, flys the UAV in a square, and lands. This routine is meant to be
copied and transferred to new routines.

SoftwarePilot is developed by ReRoutLab at The Ohio State University
reroutlab.org/softwarepilot
All source code is available for free on Github
github.com/boubinjg/softwarepilot

27

http://reroutlab.org/softwarepilot
http://github.com/boubinjg/softwarepilot

SoftwarePilot Development Guide

5 Simulation and Debugging
5.1 Overview

Development of SoftwarePilot routines and drivers is hard. There are lots of moving
parts with any robotics, machine learning, or micro-service system, and we have
combined all three. For this reason, we have provided SoftwarePilot simulation
mechanisms and a few tips on debugging for SoftwarePilot users.

5.2 SoftwarePilot Simulation

Simulating SoftwarePilot routines and drivers can be a helpful mechanism for
assuring that all components work properly before deployment onto the
SoftwarePilot VM. Many SoftwarePilot drivers and routines require calls to libraries
(like the DJI SDK) that can be tricky to deal with, are asynchronous, or both.
Therefore, it can be helpful to assure that all other components of your driver or
routine work before testing. To test SoftwarePilot code before deployment, you can
use the SoftwarePilot Linux Kernel and Coap tool described in both this guide and the
User Guide.

Simulating SoftwarePilot code on the Linux Kernel can cause problems if VM-only
code is executed. For instance, any driver call that requires connection to the UAV will
fail in the Docker environment without proper handling.

5.2.1 Preparing Code for Simulation:

Properly executing simulated code requires two steps:

● Executing code with the AUAVsim driver parameter to denote simulation
○ Ex: dn=rtn-dc=start-dp=BasicRoutine-dp=AUAVsim

● Preparing code for simulation by checking the simulation state in areas
where driver calls or control flow could cause errors outside of the Virtual
Machine.

○ Drivers and routines both have mechanisms to check the sim state
(i.e whether AUAVsim was passed as a parameter)

■ Routines: the getSim() function will return AUAVsim if the
driver is being executed in simulation, therefore, the
statement: if(getSim().equals(“AUAVsim”) can be used to
wrap code that should be run in simulation, and exclude code
that should be run outside of simulation.

SoftwarePilot is developed by ReRoutLab at The Ohio State University
reroutlab.org/softwarepilot
All source code is available for free on Github
github.com/boubinjg/softwarepilot

28

http://reroutlab.org/softwarepilot
http://github.com/boubinjg/softwarepilot

SoftwarePilot Development Guide

■ Drivers: each driver has a boolean variable AUAVsim in its
handlePUT method. This value is set to true at the beginning
of the method if any driver parameter is set to AUAVsim.
Therefore, users can check against the AUAVsim boolean
value to provide code that is run in and out of simulation.

5.3 SoftwarePilot Debugging

Due to the number of moving parts SoftwarePilot contains, it can be difficult to debug
applications. Debugging is required both at compile time (when JAR files and APKs
are built) and at runtime (when routines and drivers are executing). Compile time and
runtime debugging strategies are presented below

5.3.1 Compile Time

The $AUAVHOME/compile.py python script is our principal compile mechanism as
described in the SoftwarePilot User Guide. When developing routines, drivers, or
other additions to SoftwarePilot, we recommend that users use specific flags for
each modified category before using general flags like -all or -code.

For instance, if you are building or modifying a routine, use the -rtn flag. Gradle
outputs will show any Compilation errors in your new routine. A correctly compiled
routine, driver, interface, or APK will generate a JAR or APK file in its appropriate
build directory. If your code is compiling, but not generating a JAR or APK file, or is
not compiling at all, make sure that you have properly modified the gradle settings
outlined in this guide.

5.3.2 Runtime

Runtime errors can be quite difficult to find in SoftwarePilot applications, especially
applications that are running and being tested on the VM. Testing all non-VM
specific components of your routine, driver, or other code in simulation is
recommended. For any code that is VM specific, we recommend you use Logcat to
debug:

● Logcat is an Android app in the SoftwarePilot VM that can be used to access
live Android system logs.

SoftwarePilot is developed by ReRoutLab at The Ohio State University
reroutlab.org/softwarepilot
All source code is available for free on Github
github.com/boubinjg/softwarepilot

29

http://reroutlab.org/softwarepilot
http://github.com/boubinjg/softwarepilot

SoftwarePilot Development Guide

● Above is an example of the Logcat output window with no filter. Logcat
streams android logs from all apps, so you should use the filter feature in the
top right of the screen to search for SoftwarePilot logs specifically.

● One way to find all streaming logs for one application is to filter the process
ID (PID) of that application, which is the 4 or5 digit number to the left of
each log line.

● To find SoftwarePilot’s PID, search for “AUAV” or “AUAVAndroid”, which is
the internal name of the SoftwarePilot android app.

SoftwarePilot is developed by ReRoutLab at The Ohio State University
reroutlab.org/softwarepilot
All source code is available for free on Github
github.com/boubinjg/softwarepilot

30

http://reroutlab.org/softwarepilot
http://github.com/boubinjg/softwarepilot

SoftwarePilot Development Guide

● Below is an example Logcat filter for “AUAV”. You can see that the
AUAVAndroid app (visible to the far left of bottom-most lines) has a PID of
3350.

SoftwarePilot is developed by ReRoutLab at The Ohio State University
reroutlab.org/softwarepilot
All source code is available for free on Github
github.com/boubinjg/softwarepilot

31

http://reroutlab.org/softwarepilot
http://github.com/boubinjg/softwarepilot

SoftwarePilot Development Guide

● To find all log outputs from AUAVAndroid, we can filter by the PID, as shown
below:

● Above, you can see outputs from the DJI SDK, and other components of
SoftwarePilot. Scrolling through this output stream will allow you to find any
error messages that SoftwarePilot has generated from Android, Java, or
otherwise, and will allow you to debug your code properly.

● It can also be useful to filter by “system.out”, which will display any print
line statements you have inserted for logging or denotation purposes into
your code. We do not recommend you rely on print line debugging, but print
line statements can be useful for denoting points in driver and routine
control flow, and can be helpful when scrolling through log streams.

SoftwarePilot is developed by ReRoutLab at The Ohio State University
reroutlab.org/softwarepilot
All source code is available for free on Github
github.com/boubinjg/softwarepilot

32

http://reroutlab.org/softwarepilot
http://github.com/boubinjg/softwarepilot

