
SoftwarePilot Installation Guide

SOFTWAREPILOT INSTALLATION GUIDE

Dec 2019

Version 1.0

By: Jayson Boubin

Special Assistance from: Sadaqat Ali, Anthony Baietto, Jack Dubs, Peida Han,

 Bowen Li, Nat Shineman, Yujie Zhao, Chengyuan Zhao

SoftwarePilot is developed by ReRoutLab at The Ohio State University
reroutlab.org/softwarepilot
All source code is available for free on Github
github.com/boubinjg/softwarepilot

1

http://reroutlab.org/softwarepilot
http://github.com/boubinjg/softwarepilot

SoftwarePilot Installation Guide

Document Revisions

Date Version
Number Document Changes

12/01/2019 0.1 Initial Draft

12/26/2019 1.0 First Release Version

SoftwarePilot is developed by ReRoutLab at The Ohio State University
reroutlab.org/softwarepilot
All source code is available for free on Github
github.com/boubinjg/softwarepilot

2

http://reroutlab.org/softwarepilot
http://github.com/boubinjg/softwarepilot

SoftwarePilot Installation Guide

Table of Contents

1 Introduction 4

1.1 Scope and Purpose 4

1.2 System Requirement 4

1.3 Required Software 5

 1.4 Terminology 5

2 Installation 7

2.1 Software Download 7

 2.2 Container and Virtual Machine Setup 7

2.2.1 Docker Setup 7

 2.2.2 Virtual Machine Setup 8

3 Compiling and Executing SoftwarePilot 11

 3.1 The Docker Environment 11

 3.1.1 Docker Scripts 12

 3.2 Compile Script 13

 3.3 The SoftwarePilot Virtual Machine 15

 3.4 Installing the SoftwarePilot App 18

 3.5 Executing SoftwarePilot 18

 3.5.1 Command Format 18

 3.5.2 Executing Commands 19

 3.5.3 Routines with External Dependencies 20

SoftwarePilot is developed by ReRoutLab at The Ohio State University
reroutlab.org/softwarepilot
All source code is available for free on Github
github.com/boubinjg/softwarepilot

3

http://reroutlab.org/softwarepilot
http://github.com/boubinjg/softwarepilot

SoftwarePilot Installation Guide

1 Introduction

1.1 Scope and Purpose

SoftwarePilot is an open source middleware and API that supports aerial applications.
SoftwarePilot allows users to connect consumer DJI drones to programmable Java routines
that provide access to the drones flight controller, camera, and navigation system as well as
computer vision and deep learning software packages like OpenCV, DLIB, and Tensorflow.

SoftwarePilot is used by researchers to create and test aerial systems that use novel
autonomy policies, architectural configurations, and vision algorithms with application
domains ranging from agriculture to autonomous photography. Educators also use
SoftwarePilot to teach middle school to university students about drones, autonomous
systems, computational thinking, and programming in general

SoftwarePilot comes with a dockerfile and installation scripts for all requisite software, as
well as an Android-x86 virtual machine to communicate with DJI drones from most systems.

This guide will show you how to download, install, and run SoftwarePilot, and provide
information on the hardware and software requirements of systems which can execute
SoftwarePilot.

1.2 System Requirements
SoftwarePilot requires both an edge device and DJI UAV.

Edge Device Minimum Requirement:

● 4GB of RAM
● 2 CPU Cores
● 20GB of available disk space
● IEEE 802.11 WIFI Capabilities

Edge Device Recommended Specs:

● 8GB of Ram or more
● 4 or more CPU Cores
● 5.8GHz WIFI Capabilities

Compatible DJI UAVs:

● Spark
● Mavic (Any)
● Matrice (Any)

SoftwarePilot is developed by ReRoutLab at The Ohio State University
reroutlab.org/softwarepilot
All source code is available for free on Github
github.com/boubinjg/softwarepilot

4

http://reroutlab.org/softwarepilot
http://github.com/boubinjg/softwarepilot

SoftwarePilot Installation Guide

1.3 Required Software
SoftwarePilot has a series of software dependencies. Note: some operating systems may
require additional software, as discussed in section 2.

Required Software:

● A SoftwarePilot Compatible Operating System:
○ Linux (Kernel version > 4.0, Ubuntu 18.04 or greater recommended)
○ Windows (Version > Windows 7)
○ MacOS (Version > Snow Leopard)

● VirtualBox version 5.x
● Docker (any version)

○ Windows users should also install Docker Toolbox
● Git

1.4 Terminology
Below is a list of important terminology that will be used throughout this document and
associated definitions.

● Driver
○ A SoftwarePilot driver is one of two critical software components for

executing FAAS missions. A driver is a Java file, compiled to a JAR file, that
specifies a specialized microservice API that describes certain functions of
autonomous flight. For instance, the FlyDroneDriver specifies functions for
UAV flight. Drivers are detailed in the SoftwarePilot development guide.

● Routine
○ Routines are Java files, compiled to JAR files, that specify a series of driver

calls and other logic that constitute a FAAS mission. For instance, the
AutoSelfie routine flys a UAV to autonomously capture high-quality human
facial images. Routines are detailed in the SoftwarePilot development guide.

● Kernel
○ The SoftwarePilot Linux Kernel is an instance of SoftwarePilot that executes

outside of the SoftwarePilot virtual machine. The kernel is used for both
simulating SoftwarePilot to test functionality, and executing components of
SoftwarePilot in-mission that can not be run on the VM, like complex
machine learning algorithms. The kernel and its functionality are detailed in
the SoftwarePilot development guide

SoftwarePilot is developed by ReRoutLab at The Ohio State University
reroutlab.org/softwarepilot
All source code is available for free on Github
github.com/boubinjg/softwarepilot

5

http://reroutlab.org/softwarepilot
http://github.com/boubinjg/softwarepilot

SoftwarePilot Installation Guide

● $AUAVHOME
○ AUAVHOME is a SoftwarePilot docker container environment variable that is

used to specify the root directory of the SoftwarePilot codebase, both for the
purpose of reference in this guide, and to allow SoftwarePilot to specify
absolute paths for all requisite operations in code.

● APK
○ The SoftwarePilot APK is the android application build to execute in the

SoftwarePilot android-x86 VM. The APK includes all drivers and routines as
JAR files, and can be installed using the SoftwarePilot compile script detailed
in Section 3 of this guide.

SoftwarePilot is developed by ReRoutLab at The Ohio State University
reroutlab.org/softwarepilot
All source code is available for free on Github
github.com/boubinjg/softwarepilot

6

http://reroutlab.org/softwarepilot
http://github.com/boubinjg/softwarepilot

SoftwarePilot Installation Guide

2 Installation

2.1 Software Download
Once all software dependencies are installed, SoftwarePilot requires simply the

SoftwarePilot Git Repository and the SoftwarePilot Virtual Machine to be installed to begin
execution and development.

Note: The SoftwarePilot Docker container contains an environment variable
($AUAVHOME) which contains the root directory of the SoftwarePilot git repository.
Throughout the rest of this document, we will refer to $AUAVHOME in this context.

● The SoftwarePilot Codebase can be downloaded here:
○ https://github.com/boubinjg/SoftwarePilot
○ Clone the repository using Git for your chosen operating system

● The SoftwarePilot VirtualBox OVA can be found here:
○ https://reroutlab.org/softwarepilot/SoftwarePilot.ova
○ Download this OVA file to be installed into VirtualBox in step 2.1.2

2.2 Container and Virtual Machine Setup

2.2.1 Docker Setup

Step 1: Build the Docker image

A Dockerfile is available in the Git repository at:
$AUAVHOME/tools/Docker/build/Dockerfile

$AUAVHOME on an Ubuntu 18.04 machine:

The Dockerfile in $AUAVHOME/tools/Docker/:

SoftwarePilot is developed by ReRoutLab at The Ohio State University
reroutlab.org/softwarepilot
All source code is available for free on Github
github.com/boubinjg/softwarepilot

7

https://github.com/boubinjg/SoftwarePilot
https://reroutlab.org/softwarepilot/SoftwarePilot.ova
http://reroutlab.org/softwarepilot
http://github.com/boubinjg/softwarepilot

SoftwarePilot Installation Guide

To build the Dockerfile on Mac or Linux, run the bulid.sh script using the following
command:

On Windows, enter the following command in the bash CLI provided by
DockerToolbox

Note: Building the Docker image may take between 30-60 minutes depending on
internet connection and processor speed.

Once the Dockerfile has been used to build the Docker image, the SoftwarePilot
docker container can be accessed. Using the Mac or Linux terminal, or the
DockerToolbox CLI in Windows, the script
$AUAVHOME/tools/Docker/runAUAVLinux.sh can be used to enter an interactive
session of the SoftwarePilot docker container.

The above image shows the following sequence of steps:

● The runAUAVLinux.sh script is used to enter the SoftwarePilot docker
container in an interactive session.

○ Note: sudo/administrator access is required
● Once in the container, CD to /home/SoftwarePilot, which is $AUAVHOME in

the docker container.

2.2.2 Virtual Machine Setup

Once you have downloaded the SoftwarePilot OVA and installed VirtualBox, you can
set up the SoftwarePilot Virtual Machine

SoftwarePilot is developed by ReRoutLab at The Ohio State University
reroutlab.org/softwarepilot
All source code is available for free on Github
github.com/boubinjg/softwarepilot

8

http://reroutlab.org/softwarepilot
http://github.com/boubinjg/softwarepilot

SoftwarePilot Installation Guide

First, Open VirtualBox, and select File->Import Appliance to install the OVA:

Select the OVA from your file system and import it:

Name your OVA and allocate RAM and CPU cores:

Note: Make sure you allocate at least 2GB of ram to VirtualBox. We recommend at
least 4GB, but more is (almost) always better as long as you leave some for your OS.

SoftwarePilot is developed by ReRoutLab at The Ohio State University
reroutlab.org/softwarepilot
All source code is available for free on Github
github.com/boubinjg/softwarepilot

9

http://reroutlab.org/softwarepilot
http://github.com/boubinjg/softwarepilot

SoftwarePilot Installation Guide

Once your OVA is installed, go to settings->network in VirtualBox to set up your
network adapter. Make sure to enable at least one network adapter. Assure that
your adapter is Bridged. Set your adapter name to the name of your wireless NIC. In
the example below, the wireless network adapter of the host machine is named
“wlp4s0”.

SoftwarePilot is developed by ReRoutLab at The Ohio State University
reroutlab.org/softwarepilot
All source code is available for free on Github
github.com/boubinjg/softwarepilot

10

http://reroutlab.org/softwarepilot
http://github.com/boubinjg/softwarepilot

SoftwarePilot Installation Guide

3 Compiling and Executing SoftwarePilot

Due to SoftwarePilot’s complexity, it can be difficult to compile and execute routines

and driver calls. In this section, we describe the full process of compiling, transfering, and
executing SoftwarePilot code on a UAV and edge system. In this section, we detail the
SoftwarePilot Docker container, the principal development environment for SoftwarePilot
code. We discuss the SoftwarePilot Virtual Machine, used for executing SoftwarePilot code
on edge systems, as well as the process of compiling and transferring code between the
Docker container and Virtual Machine.

3.1 The Docker Environment
The SoftwarePilot Docker container is a fully functional Ubuntu Linux environment

capable of compiling and running any SoftwarePIlot code. The purpose of this Docker
container is to allow any user on most modern operating systems to use and modify
SoftwarePilot code. The docker container contains all SoftwarePilot code, as well as all
Software to compile, transfer, and add to the SoftwarePilot codebase. The Docker container
is meant to be a development environment as well as a mechanism for simply compiling and
deploying existing code. Aside from the SoftwarePilot codebase, the Docker environment
contains the following software features

● Editing:
○ Vim
○ Nano

● System Software
○ Git
○ Cmake
○ Curl
○ Unzip
○ Wget
○ Net-tools

● Programming
○ Python3.6

■ Python3 pip
■ opencv-python
■ Python face_recognition
■ yolo34py: YOLO for python

○ Java 8
■ ca-certificates for Java

○ Android 26

SoftwarePilot is developed by ReRoutLab at The Ohio State University
reroutlab.org/softwarepilot
All source code is available for free on Github
github.com/boubinjg/softwarepilot

11

http://reroutlab.org/softwarepilot
http://github.com/boubinjg/softwarepilot

SoftwarePilot Installation Guide

■ Gradle 4.4

Under $AUAVHOME/tools/Docker/build, we have a second Dockerfile, Dockerfile.nvidia,
which is identical to our original dockerfile, but adds Nvidia driver support. This script is
currently only tested under Linux, but may work for other operating systems. If you wish to
execute machine learning algorithms in the SoftwarePilot Docker container, build this
version of the container.

Note: the SoftwarePilot codebase also opens the following ports on the host system’s
wireless NIC for communication between the Docker Container and Virtual Machine:

● 12013: Transfer data between SoftwarePilot code running on the VM and
SoftwarePilot code running on the Docker container

● 5117: Access to the external commands driver (Detailed in the development guide)

3.1.1 Docker Scripts

The docker environment contains a series of shell scripts that make navigating the Docker

environment slightly easier. None of these scripts are required to operate SoftwarePilot, but

help to simplify the use of Docker. In this section, we detail each script and its purpose.

● build.sh:

○ This script builds the auavLinux docker image, the image for the
SoftwarePilot docker environment. This script uses the Dockerile at
$AUAVHOME/tools/docker/build/Dockerfile, but can be modified to use the
Nvidia compatible Docker file.

● save.sh:

○ This script will commit the last active AUAVLinux docker container, saving
all code and updates to the container to the AUAVLinux image.

● cleanDocker.bash:

○ This script cleans up docker images and containers that have been exited,
reclaiming portions of the filesystem taken up by dead images.

● runAUAVLinux.sh:

○ This script will start an interactive session of the AUAVLinux container. This
allows the user to enter the container and access the SoftwarePilot codebase
and programming environment. This script also opens ports 5117 and

SoftwarePilot is developed by ReRoutLab at The Ohio State University
reroutlab.org/softwarepilot
All source code is available for free on Github
github.com/boubinjg/softwarepilot

12

http://reroutlab.org/softwarepilot
http://github.com/boubinjg/softwarepilot

SoftwarePilot Installation Guide

12013 on the host machine’s principal network interface, and will not
construct an interactive session unless those ports are available.

3.2 Compile Script
Inside the SoftwarePilot docker container, at $AUAVHOME (/home/SoftwarePilot/),
there are a series of code-containing directories, along with a compile script
(compile.py).

Note: Each file and directory in $AUAVHOME is detailed in the SoftwarePilot
development guide. In the user-guide, we simply concentrate on compiling and
building code.

To compile any component of the SoftwarePilot codebase, or deploy code to the VM,
you can use the compile.py python script. The compile.py script has a number of
functionalities and arguments, detailed below.

Compile.py flags and arguments:

● -h
○ The -h argument provides helpful statements detailing all arguments

and flags
● -drv

○ The -drv flag compiles all SoftwarePilot drivers in the drivers.src
directory. This flag takes no arguments, and is included in both the
-code and -all flags. This Compilation step is critical to APK
construction. SoftwarePilot can not be deployed without driver
compilation using -drv, -all, or -code.

○ Example: python3 compile.py -drv
● -rtn

○ The -rtn flag compiles all SoftwarePilot routines in the routines.src
directory. This flag takes no arguments, and is included in both the
-code and -all flags. This Compilation step is critical to APK
construction. SoftwarePilot can not be deployed without routine
compilation using -rtn, -all, or -code.

○ Example: python3 compile.py -rtn
● -lin

○ The -lin flag compiles the SoftwarePilot linux kernel and interfaces
needed for simulation. This flag takes no arguments and is included
in both the -code and -all flags. This Compilation step is critical to
APK construction. SoftwarePilot can not be deployed without
interface and kernel compilation using -lin, -all, or -code.

SoftwarePilot is developed by ReRoutLab at The Ohio State University
reroutlab.org/softwarepilot
All source code is available for free on Github
github.com/boubinjg/softwarepilot

13

http://reroutlab.org/softwarepilot
http://github.com/boubinjg/softwarepilot

SoftwarePilot Installation Guide

○ Example: python3 compile.py -lin
● -mdl

○ The -mdl flag compiles select external models (secondary software
not required for UAV flight that exist outside of routines, drivers, and
interfaces) that require compilation. This flag takes no arguments
and is included in both the -code and -all flags

○ Example: python3 compile.py -mdl

● -doc
○ The -doc flag compiles all javadoc associated with drivers, routines,

interfaces, and the SoftwarePilot linux kernel. This flag is included in
the -all flag, and is not APK critical.

○ Example: python3 compile.py -doc
● -cln

○ The -cln flag cleans temporary files from all gradle builds from the
-drv, -rtn, -lin, and -andr flags. -cln is not included in any other flags,
and will run before any other flags if called.

○ Example: python3 compile.py -cln
● -andr

○ The -andr flag compiles the SoftwarePilot android app APK. It is
included in the -all flag. This compilation step should not be executed
unless all drivers, routines, and interfaces at minimum have been
compiled, either previously or in the execution. This Compilation
step is critical to APK construction. SoftwarePilot can not be
deployed without driver compilation using -andr or -all. Note: the
first time you build an android APK on the SoftwarePilot docker
container, you should connect your system to the broader internet,
as you will need to download Android updates.

○ Example: python3 compile.py -andr
● -code

○ The -code flag compiles all sourcecode, meaning all code required to
build the SoftwarePilot android APK, but not the APK itself. This flag
compiles only mission-critical code, and is not inherently required to
build the APK, but if combined with the -andr flag, will compile all
code and build a complete APK.

○ Example: python3 compile.py -code
● -all

SoftwarePilot is developed by ReRoutLab at The Ohio State University
reroutlab.org/softwarepilot
All source code is available for free on Github
github.com/boubinjg/softwarepilot

14

http://reroutlab.org/softwarepilot
http://github.com/boubinjg/softwarepilot

SoftwarePilot Installation Guide

○ The -all flag compiles all sourcecode and the SoftwarePilot APK, akin
to running compile.py with the -code and -andr flags. Given
successfull compilation of all steps, the -all flag will compile all code
from scratch, and a complete Android APK. This flag is not
technically required to build a successful APK, but will generate one
given successful compilation of all required steps.

○ Example: python3 compile.py -code
● -ins

○ The -ins argument will deploy and execute the SoftwarePilot android
APK onto a SoftwarePilot virtual machine. The virtual machine is
specified by its IP address. One the script is executed, this argument
will transfer an APK onto the virtual machine, install it, and begin
executing it. Note: This argument should only be executed when the
host machine and VM are connected to the WIFI SSID of a DJI drone.
This allows the APK to transfer directly across the bridged adapter
instead of through the broader internet. Note: This process WILL fail
on the first installation of a new VM. Check section 3.4 for details and
next steps

○ Example: python3 compile.py -ins 192.168.2.21

3.3 The SoftwarePilot Virtual Machine
The SoftwarePilot virtual machine is a modified x86 Android virtual machine build
for two purposes: 1, to perform basic UAV actions, like capturing data, transferring
data, movement, etc. with SoftwarePilot drivers, and 2) to manage data movement
between the UAV and the edge system for routines that require complicated
machine learning. Development of SoftwarePilot apps is detailed in the development
guide, but setup and execution of the SoftwarePilot app is detailed in this section,
and section 3.4.

SoftwarePilot is developed by ReRoutLab at The Ohio State University
reroutlab.org/softwarepilot
All source code is available for free on Github
github.com/boubinjg/softwarepilot

15

http://reroutlab.org/softwarepilot
http://github.com/boubinjg/softwarepilot

SoftwarePilot Installation Guide

The SoftwarePilot VM is a base Android system, with a series of important apps
listed below:

● The File Manager
○ The File manager app provides access to the basic android

filesystem. It may be required to access the SoftwarePilot APK if your
APK must be manually installed

● SSH Server
○ The SSH Server app can be used to both open an SSH server to

transfer files to and from the VM and find the IP address of the VM
when transferring files using the compile script detailed in section
3.2. An example is shown below:

IMPORTANT Note

SoftwarePilot is developed by ReRoutLab at The Ohio State University
reroutlab.org/softwarepilot
All source code is available for free on Github
github.com/boubinjg/softwarepilot

16

http://reroutlab.org/softwarepilot
http://github.com/boubinjg/softwarepilot

SoftwarePilot Installation Guide

● The SoftwarePilot App
○ A base installation of the SoftwarePilot app is already available on

the VM. To start this installation, or an updated version, simply click
on the app when the host WIFI is connected to a compatible DJI UAV.

● CC
○ CC is a Coap Client used to execute SoftwarePilot drivers and

routines when the SoftwarePilot app is running. This is the primary
interface between the user and SoftwarePilot. Its use is documented
in section 3.5

● Logcat
○ Logcat allows users to view live Android logs. App printouts, error

messages, and more can be viewed by the user to aid with
development. This app is covered further in the Development Guide.

SoftwarePilot is developed by ReRoutLab at The Ohio State University
reroutlab.org/softwarepilot
All source code is available for free on Github
github.com/boubinjg/softwarepilot

17

http://reroutlab.org/softwarepilot
http://github.com/boubinjg/softwarepilot

SoftwarePilot Installation Guide

3.4 Installing the SoftwarePilot App

SoftwarePilot installation can usually be done using the compile script detailed in

section 3.2. There are important situations, however, where this process will not
work. The intention of the -ins flag of the compile script is to install SoftwarePilot on
the VM over a prior installation of SoftwarePilot, as an update. Usually, this process
works just fine, but under two specific conditions, it will fail.

● The first installation of SoftwarePilot on a new VM is a special circumstance.

the SoftwarePilot VM comes with a pre-installed version. Given that the
normal development and testing process of SoftwarePilot requires updating
the APK on the VM, the principal issue is that android apps build on two
different systems are usually not compatible for updates. For this reason, we
suggest that on your first installation (which, if following the -ins
instructions should fail after APK transfer), to first uninstall the preinstalled
APK (click and hold the SoftwarePilot app on the VM homescreen and
choose uninstall). Then, enter the filesystem and doubleclick the
AUAVAndroid.APK file to install the new APK. IMPORTANT NOTE: Every
time you install the SoftwarePilot app on any android device, it MUST be
connected to the broader internet, not a DJI UAV. The DJI SDK must
authenticate itself with DJI’s servers. Once you have executed the app when
connected to the broader internet, you should be able to connect with a DJI
drone when connected to the drones WIFI.

● Second, and less commonly, when major updates are added into the APK (a
new library, updates to core library versions, etc), or to the underlying
system (major OS version updates, total system changes), the APK may be
incompatible with the prior installed version. This requires a full reinstall as
described above, and authentication with DJI’s servers.

3.5 Executing SoftwarePilot Drivers and Routines
SoftwarePilot drivers and routines can be executed both in the VM or on the host
using CoAP command. The format and tools to execute commands are detailed below.
Some SoftwarePilot routines and drivers also require code to run in the SoftwarePilot
docker container. This process is also detailed below.

3.5.1 Command Format
The command format is as follows:

dn=$DRIVERNAME-dc=$DRIVERCOMMAND-dp=$DRIVERPARAM

SoftwarePilot is developed by ReRoutLab at The Ohio State University
reroutlab.org/softwarepilot
All source code is available for free on Github
github.com/boubinjg/softwarepilot

18

http://reroutlab.org/softwarepilot
http://github.com/boubinjg/softwarepilot

SoftwarePilot Installation Guide

● dn specifies a driver name (e.g. FlyDroneDriver, which handles all UAV flight
actions).

● dc specifies a driver command specific to each driver (e.g. lft, a FlyDroneDriver
command that lifts the UAV off the ground).

● dp specifies a driver parameter. Not all drivers require parameters, but some may
require multiple parameters. Any number of driver parameters may be added to the
end of the execution string

Executing Drivers:

● To execute a driver, simply run the command sequence above, specifying the name
of the driver in the “dn” parameter.

Executing Routines:

● To execute a routine, set “dn” to “rtn”. Set “dc” to “start”, and set one parameter to
dp=$ROUTINE_NAME, where $ROUTINE_NAME is the name of your routine.

● Example: to start the BasicRoutine routine, the following line can be used:
○ dn=rtn-dc=start=dp=BasicRoutine

3.5.2 Executing Commands
Commands can be executed both on the VM or host system.

● On the VM, commands can be executed using the CC app. Once the
SoftwarePilot app is running and a UAV is connected, CC can be used to
execute commands of the form described in section 3.5.1.

● Below is an example of the CC command to execute BasicRoutine, a simple
SoftwarePilot routine.

SoftwarePilot is developed by ReRoutLab at The Ohio State University
reroutlab.org/softwarepilot
All source code is available for free on Github
github.com/boubinjg/softwarepilot

19

http://reroutlab.org/softwarepilot
http://github.com/boubinjg/softwarepilot

SoftwarePilot Installation Guide

● SoftwarePilot CoAP commands can also be executed on the host.
SoftwarePilot contains a CoAP client application in
$AUAVHOME/tools/coap-tool/ which can be used to execute well-formed
coap commands of any type.

● We have also included a Pearl script, auav.pl, which takes a series of
arguments allowing for SoftwarePilot command execution

● Arguments are as follows:
○ IP: The IP address of the SoftwarePilot VM
○ DN, the name of the driver you wish to invoke (or “rtn” for routines)
○ DC, the command for your given driver
○ DP, any series of driver parameters

● Example: ./auav.pl 192.168.2.21 rtn start BasicRoutine

3.5.3 Drivers and Routines with External Dependencies
Some SoftwarePilot calls require external dependencies. For instance, if a driver
requires access to Tensorflow or DLIB library functions, these often can not be
packaged into an APK and executed in Android. For this reason, any complex
machine learning in SoftwarePilot is performed in the docker container. If you are
executing any driver or routine that requires, you should execute the SoftwarePilot
Linux kernel by performing the following commands:

● CD into $AUAVHOME/kernels
● type: ./AUAVLinux.sh

This will start the kernel and allow the VM to speak to the docker container. Note:
any SoftwarePilot routine or driver that requires access to the Docker container will
require, as a driver parameter, the IP address of your host WIFI adapter (the
adapter provided to VirtualBox for use by the VM).

SoftwarePilot is developed by ReRoutLab at The Ohio State University
reroutlab.org/softwarepilot
All source code is available for free on Github
github.com/boubinjg/softwarepilot

20

http://reroutlab.org/softwarepilot
http://github.com/boubinjg/softwarepilot

SoftwarePilot Installation Guide

SoftwarePilot is developed by ReRoutLab at The Ohio State University
reroutlab.org/softwarepilot
All source code is available for free on Github
github.com/boubinjg/softwarepilot

21

http://reroutlab.org/softwarepilot
http://github.com/boubinjg/softwarepilot

